Post hoc sample size estimation for deep learning architectures for ECG-classification Har passerat
Tisdag 23 maj 2023 15:45 - 16:00 G1
Föreläsare: Lucas Bickmann
Spår: MIE: Health information systems
Deep Learning architectures for time series require a large number of training samples, however traditional sample size estimation for sufficient model performance is not applicable for machine learning, especially in the field of electrocardiograms (ECGs). This presentation outlines a sample size estimation strategy for binary classification problems on ECGs using different deep learning architectures and the large publicly available PTB-XL dataset. The post-hoc sample size estimations are based on a benchmark across different architectures (XResNet, Inception-, XceptionTime, fully convolutional network), and different classification targets (Myocardial Infarction, Conduction Disturbance, ST/T Change, and Sex). The results indicate trends for required sample sizes for given tasks and architectures, which can be used as orientation for future ECG studies or feasibility aspects.
Språk
English
Seminarietyp
Enbart på plats
Föreläsningssyfte
Orientering
Kunskapsnivå
Avancerad
Målgrupp
Tekniker/IT/Utvecklare
Forskare (även studerande)
Studerande
Nyckelord
Innovativ/forskning
Konferens
MIE
Författare
Lucas Bickmann, Lucas Plagwitz, Julian Varghese
Föreläsare
Lucas Bickmann Föreläsare
Research Associate
University Hospital Münster
Research Associate at the Institute of Medical Informatics, University of Münster, Germany.