Huvudbild för Vitalis 2023

Post hoc sample size estimation for deep learning architectures for ECG-classification Har passerat

Tisdag 23 maj 2023 15:45 - 16:00 G1

Föreläsare: Lucas Bickmann

Spår: MIE: Health information systems

Deep Learning architectures for time series require a large number of training samples, however traditional sample size estimation for sufficient model performance is not applicable for machine learning, especially in the field of electrocardiograms (ECGs). This presentation outlines a sample size estimation strategy for binary classification problems on ECGs using different deep learning architectures and the large publicly available PTB-XL dataset. The post-hoc sample size estimations are based on a benchmark across different architectures (XResNet, Inception-, XceptionTime, fully convolutional network), and different classification targets (Myocardial Infarction, Conduction Disturbance, ST/T Change, and Sex). The results indicate trends for required sample sizes for given tasks and architectures, which can be used as orientation for future ECG studies or feasibility aspects.

Språk

English

Seminarietyp

Enbart på plats

Föreläsningssyfte

Orientering

Kunskapsnivå

Avancerad

Målgrupp

Tekniker/IT/Utvecklare
Forskare (även studerande)
Studerande

Nyckelord

Innovativ/forskning

Konferens

MIE

Författare

Lucas Bickmann, Lucas Plagwitz, Julian Varghese

Föreläsare

Lucas Bickmann Föreläsare

Research Associate
University Hospital Münster

Research Associate at the Institute of Medical Informatics, University of Münster, Germany.