Huvudbild för Vitalis 2023
Profilbild för Predicting Progression of Type 2 Diabetes using Primary Care Data with the Help of Machine Learning

Predicting Progression of Type 2 Diabetes using Primary Care Data with the Help of Machine Learning Har passerat

Torsdag 25 maj 2023 13:15 - 13:30 G2

Föreläsare: Berk Ozturk

Spår: MIE: Special Topic: Caring is Sharing - exploiting value in data for health and innovation

Type 2 diabetes is a life-long health condition, and as it progresses, a range of comorbidities can develop. The prevalence of diabetes has increased gradually, and it is expected that 642 million adults will be living with diabetes by 2040. Early and proper interventions for managing diabetes-related comorbidities are important. In this study, we propose a Machine Learning (ML) model for predicting the risk of developing hypertension for patients who already have Type 2 diabetes. We used the Connected Bradford dataset, consisting of 1.4 million patients, as our main dataset for data analysis and model building. As a result of data analysis, we found that hypertension is the most frequent observation among patients having Type 2 diabetes. Since hypertension is very important to predict clinically poor outcomes such as risk of heart, brain, kidney, and other diseases, it is crucial to make early and accurate predictions of the risk of having hypertension for Type 2 diabetic patients. We used Naïve Bayes (NB), Neural Network (NN), Random Forest (RF), and Support Vector Machine (SVM) to train our model. Then we ensembled these models to see the potential performance improvement. The ensemble method gave the best classification performance values of accuracy and kappa values of 0.9525 and 0.2183, respectively. We concluded that predicting the risk of developing hypertension for Type 2 diabetic patients using ML provides a promising stepping stone for preventing the Type 2 diabetes progression.

Språk

English

Seminarietyp

Enbart på plats

Föreläsningssyfte

Verktyg för implementering

Kunskapsnivå

Avancerad

Målgrupp

Chef/Beslutsfattare
Tekniker/IT/Utvecklare
Forskare (även studerande)
Studerande
Omsorgspersonal
Vårdpersonal

Nyckelord

Personcentrering
Innovativ/forskning
Test/validering
Patientsäkerhet
Etik

Konferens

MIE

Författare

Berk Ozturk, Tom Lawton, Stephen Smith, Ibrahim Habli

Föreläsare

Profilbild för Berk Ozturk

Berk Ozturk Föreläsare

Researcher
University of York, Department of Computer Science

Hi, I am Berk from University of York, United Kingdom. I’m a fully-funded PhD student at the Department of Computer Science, and my research project area is Safe Artificial Intelligence (AI) in Healthcare.