HEIDA - Homomorphic Encryption for Integrity protection in Data sharing Activities with health data Har passerat
Tisdag 14 maj 2024 16:30 - 17:00 F2
Föreläsare: Rickard Brännvall
Spår: Framväxande teknologier
Currently, an individual’s opportunities for privacy protection are limited by their digital skills and external factors such as illness, residence, and socio-economic status. Technological development in the field is happening very quickly, but coordination and common platforms are needed to increase accessibility. The purpose of the HEIDA project has been to develop software examples for homomorphic encryption based on RISE’s winning solution in the innovation competition Vinter. This will enable calculations on encrypted data and thus increase the individual’s opportunities for privacy protection in digital health. The project has also explored the usefulness of the technology with federated learning and analyzed the reliability, efficiency, and memory usage of calculations to provide insight into the practical application of the technology. This work also resulted in the development of a new type of neural network that is more resource-efficient during encryption. The technology is of interest to health care decision makers and IT professionals that consider solutions for end-to-end privacy protection in health data platforms.
Ämne
Data- och informationssäkerhet, Cybersäkerhet
Seminarietyp
Förinspelat + På plats
Föreläsningsformat
Presentation
Föreläsningssyfte
Verktyg för implementering
Kunskapsnivå
Fördjupning
Målgrupp
Chef/Beslutsfattare
Politiker
Verksamhetsutveckling
Tekniker/IT/Utvecklare
Forskare (även studerande)
Studerande
Nyckelord
Innovativ/forskning
Uppföljning/Nulägesbeskrivning
Test/validering
Informationssäkerhet
Konferens
Vitalis
Föreläsare
Rickard Brännvall Föreläsare
Senior forskare
RISE Research Institutes of Sweden
Rickard Nakamura Brännvall is a Senior Researcher in Applied AI at RISE Research Institutes of Sweden, with a background in Physics and Finance. His current research focuses on the application of privacy-enhancing technologies, particularly for health data applications and privacy-preserving machine learning.